CALM Developer Guide

I. Burak Ozyurt

October 15, 2008

Contents

1 Form Designer 3
1.1 Form Components Model 3
1.1.1 CALM Document Representation 3

1.2 Property Editors/Customizers 3
1.3 Layout Management L 4
1.3.1 CAGridLayoutCustomizer - Laying out a container 5

2 Form View - Backing Model Representation 7
2.1 Building/Modifying Assessment Visually 7
2.1.1 Actionson ascore node 7

2.2 Associating scores with form input fields oL o000 8
2.3 Data Source Interaction L L 8

3 Code Generation 10
3.1 Struts JSP Generation 10
3.2 Struts Form Bean Generation 11
3.3 Updating Struts configuration file L o 11

List of Figures

1.1 Simplified class diagram for Form Components Model
1.2 Simplified class diagram for Layout Manager
1.3 GridLayoutCustomizer class diagram

2.1 Simplified class diagram for CALM data access layer

3.1 Simplified class diagram for CALM code generator .

Chapter 1

Form Designer

1.1 Form Components Model

CALM represents an online form by a composition of containers and display components. This
representation is called the form components model. The class diagram for the form components
model is shown in Figure 1.1. A display component is a general term for any construct that
acts as a building block of a form. A display component has an identity, a bounding box, a
location, a parent (in most cases). It can draw itself when requested. It can serialize itself in XML
format or deserialize from XML. Certain types of display components can contain other display
components. Those display components are called containers. Every display component needs to
implement the interface IDisplayComponent. The common functionality is provided by abstract
class AbstractDisplayComponent. Currently, there are seven concrete display components available
corresponding to (multi-line, styled) static text, text input field, checkbox, radio button, dropdown,
textarea HTML form fields and buttons with predefined actions.

1.1.1 CALM Document Representation

The generated online forms by CALM needs to survive between CALM user sessions, hence they
should be persisted in a format, that can be used to recreate the layout/score association work
done previously on it. Each CALM online clinical assessment is saved in a XML file as defined
in CALM document specification document and in CALM document XML schema as defined in
calm_document.zsd which is available under CVS with the rest of the CALM source distribution.
The main class that represents a CALM document is Document, which maintains a list of form
pages as Page objects. A document is persisted in XML by a call of saveDocument method of a
Document class and loaded into memory by a call to loadDocument method.

1.2 Property Editors/Customizers

CALM follows JavaBeans specification and can be seen as a kind of bean container. The public
properties of all form element beans and also other non-visual beans are made modifiable by the
use of property editors or bean customizers for more complex beans. The PropertyEditorPanel
class provides a generic Ul component for modifying the public properties of a Java bean. Most of
the form element beans implementing IDisplayComponent have at least a BeanInfo class to provide
explicit information about their corresponding bean to guide introspection so that only certain fields
from available public properties are user modifiable and/or correct getters and setters are called for
the properties. Also with non-primitive properties with a range of possible values, custom property

Layout Management 4

dnterfaces
[DisplayComponent

etBounds()Rectangle2D
setBounds()
draw)
getParent():IDisplayComponent
setfarent{parent)
getPreferredsized: Dimension
set¥{cint)
set(yint)
getlD{:String
taXML():Element
setSelected(y
getselectad():boolaan
isContainedy): boalean
cantainsirect) boalean
seGrouplD()
getGrouplDg:string
setQuestioniD()
getQuestionlD(:String
getCSaClass():String
setC5Class)
getJustification(): Justification
setShowAssaciations)
setShowuestions)

FiY

AbstractDisplayComponent

TextDisplayComponent TextFieldDisplayComponent RadioButtonDisplayCompaonent | | CheckBoxDisplayComponent

CAContainer

ButtonDisplayComponent | | DropdownDlsplayComponent CAPanel TextAreaDisplayComponent

Figure 1.1: Simplified class diagram for Form Components Model.

editors are provided. For example, each form element bean has a justification property provided by
Justification class. The property editor for displaying the possible justification field as a dropdown is
JustificationEditor. The naming (Editor suffix) is mandated by JavaBeans specification to recognize
the custom property editor. Certain beans require more than modification of their properties to
customize. For those beans, a bean customizer is provided. For example the button form element
bean has a customizer named ButtonDisplayComponentCustomizer, to provide question ranges and
operation type selection for Skip button. The bean info class ButtonDisplayComponentBeanlInfo
registers the customizer for the bean.

1.3 Layout Management

Each physical page of an paper assessment form usually maps to a single HTML form. One of
the main responsibilities of CALM is to provide a layout management mechanism for the online
assessment form pages. Every display element layout manager class needs to implement the ILay-
outManager interface as depicted in class diagram in Figure 1.2. CALM has currently a single
layout manager class namely CAGridLayout which allows the display components and containers
to be arranged in rectangular grids consisting of (ir)regular sized rows and columns. Each CACon-
tainer or its subclass CAPanel is associated with a single layout manager. CAPanel class is used

October 15, 2008

Layout Management 5

to represent the outermost container encapsulating a form page as shown in CALM layout pane.
CAGridLayout layout manager class maintains grid cell information in a GridCellInfo class. The
layout manager is responsible for satisfying the constraints associated with each grid cell by solving
the constraint equations resulting in appropriate sizing of the grid cells containing display elements.
There are currently two different type of constraints that can be imposed on the size of a grid cell.
However, only percentage based grid cell constraints must be used all the time. Multiple cell span
constraints are no longer supported.

gnterfaces
ILayoutManager

CAContainer

addLayvoutComponentiic: IDisplayComponent, constraints: Object)
removelayoutCamponent{ic Displaycomponent)
layowtContainer{parent: CAContainer)

invalidateLayoutiparent: CAContainer)

hitTest{rmix:int, myint, parent: CAContainer) Object
clone(:Object

1o¥ML{:Element

getselected(:boolean

components;List

layouttan: ILayoutM anager

isGroup:boolean

add(ic:IDisplayComponent)
add(ic:IDisplayComponent, Object constraints)
10X ML Element

)
i
|
CAGridLayout CAPanel
initializeFromXML{e: Element): CAPaneal
10¥MLY:Element
GridCellinfo
cellRows: List _ CellConstraint
removeRowrowld;int: List -
addRowiafterRowld:: int):List I’DWld).{..Int
setM axColsinewh axCols:int) colldscint
setCellConstraint{row:int, colint, constraint: CellConstraint calculateHglghtO
getConstraint(row:int, colint): CellConstraint calculateliicith()
getRow(raw:int): CellConstraint[]
getindesxirowsint, col:int) | |
initializeFromxMLie: Element): GridCallinfa
10X MLO:Elernent PercentCellConstraint MultipleCellSpanConstraint
rowPercent: double rowSspan: int
colPercent.double colspan:int

Figure 1.2: Simplified class diagram for Layout Manager.

1.3.1 CAGridLayoutCustomizer - Laying out a container

Each container has a layout manager class associated to handle how the contained display elements
and/or containers are laid out visually on CALM layout pane. The GridLayoutCustomizer is the
customizer for the CAContainer bean (See Figure 1.3). This customizer provides a preview panel
where you can also manipulate the grid layout by mouse and add/delete rows from anywhere of the
grid using the PreviewPanel inner class. The constraints associated with a selected cell is modified
using the inner class PercentConstraintEditorPane. The preview panel class PreviewPanel uses an
instance of PreviewPanelMouseHandler for mouse event handling, while delegating popup menu
handling to the inner class PopupMenuHelper.

October 15, 2008

Layout Management

CACridLayout Customizer

previewPangl
ceditorPane: CellConstraintEditarPane

#prepareLayoutPreviewPanel))
#prepareControlPanel()
#handleRowColumnsSetting()
H#removeRowliciint)
#insertRowafterRow:int
H#updateFields()

PreviewPanelMouseHandler

PreviewPanel

popupHelper:Popuph enuHelper

PopupMenuHelper

#handleDeleteRow()
#handlelnsertRow)

October 15, 2008

CellConstraintEditorPana

—I— ce:CellCanstraint

CellSpanConstraintEditorPane

PercentConstraintEditorPane

Figure 1.3: GridLayoutCustomizer class diagram.

Chapter 2

Form View - Backing Model
Representation

2.1 Building/Modifying Assessment Visually

The clinical assessment form pages are simply a view of the backing data model namely the assess-
ment domain object. An assessment domain object contains a hierarchy of score domain objects.
Each score object can have zero or more scorecode domain objects. Also each score domain object
can have an assessment item domain object representing the question text. In CALM, the assess-
ment domain object concept is visualized by a tree view in the left side of the CALM screen. The
tree panel is an instance of AssessmentMaintenancePanel class, which maintains the tree view and
provides popup menu for creating/updating the assessment domain model. Each tree node is a
view of the backing domain object. For mandatory fields, the backing domain object is a simple
string; for the assessment node, it is an instance of AssessmentInfo class; for a score node, it is an
instance of Scorelnfo class.

2.1.1 Actions on a score node

e Add Subscore - adds a subscore to the selected score node using the ScorelnfoDialog dialog
box class.

e Add Score Codes - adds a score code (enumerated value) to the selected score node using the
dialog box defined in ScoreCodeDialog class.

e Properties - shows properties on the backing model object (Scorelnfo in this case) using
PropertyEditorPanel generic property editor panel in a dialog box.

e Update - allows updating of the properties of the selected score node via ScoreCodeDialog
class.

e Update Score Codes - allows updating of the score codes for the selected score node via
ScoreCodeDialog class.

e Delete Score - removes the selected score from the assessment tree.

e Associate - starts association (binding process) for the selected score node with a form input
element or a logical group of mutually exclusive form input elements. This process is explained
in more detail in the following section.

Associating scores with form input fields 8

2.2 Associating scores with form input fields

The singleton AssociationHelper acts as the repository of form input field to assessment score and
mandatory field associations. It is also an event dispatcher notifying registered interested parties
on the change in association information to propagate change info in a decoupled manner synch-
ing up different parts of CALM. The different types of associations are represented by subclasses
of Association class. A mandatory field to form input/logical group mapping is represented by
MandatoryFieldAssociation class.

The AssessmentMaintenancePanel and the form layout panel class ScoreLayoutPanel beans
communicate with each other using bounded property SelectedModelDatalnfo to coordinate binding
a score with a form input/logical group mapping. During initialization, ClinicalAssessmentLayout-
Manager creates both beans and registers property change listeners to each other.

1.

User selects a score in AssessmentMaintenancePanel and chooses Associate from the popup
menu.

The handleAssociate method on ModelTreeMouseAdapter creates a SelectedModelDatalnfo
object encapsulating the score/mandatory field selected and sets the bound property on As-
sessmentMaintenancePanel.

Since ScoreLayoutPanel is registered as a listener for the properties of AssessmentMaintenan-
cePanel, it receives a property change event, checks if it is the kind it has interested in, finds
it is an association request, changes itself into association mode.

The user clicks on the form input/ logical group in the form layout panel.

The display component selected for association is signaled back to property change listen-
ers of the SelectedComponentInfo property which is a wrapper around the selected display
component.

Since AssessmentMaintenancePanel is a listener on this property change event, it receives
the SelectedComponentInfo in the property change event. It checks if the display component
can be associated with the score, if so via AssociationDialog dialog box, collects score code
association user input (if any) and finishes the association process.

2.3 Data Source Interaction

The data access layer classes for CALM are summarized in Figure 2.1.

October 15, 2008

Data Source Interaction

AssessmentHelper

SaveASSesSMENt[as5essment)
uptlateAssessment()
deletedssessment (as, deleteDatablso)

ram

«nterfaces
|CommonGQueryHelper

getNextSequenceMumber(cony:int
getDatabaselser{can, name):int
getTablelD{con, tahleName):int
getStorecAssessmentiDsForAssessment(con, assessmentiD).List
removeStoredAssessmentsForAssessment(con, assessmentiDyint

Dint

CommonQueryHelperFactory

DAOFactory

createdsssessmentDAD(dNType) | AssessmentDAD
createAsssessmentscoreDAO(HTypEx I AssessmentScore
createdzssessmentScoreCoddeDAD{dhType): l4ssessmentScoreCoceDAC

smentDatavalues(con,asTablename,
.y

AbstractCommonQueryHelper

L3

oracle.CommonueryHelper

[ag

TtemDAC(dTye) | Asse

createOntologyConcepDAC(ETye) nologyCanceptDAQ

nDAD

postgres.CommonQueryHelper

dnterfaces
|AssessmentDAO

«interfaces
|AssessmentScoreDAD

cinterfaces
|AssessmentScoreCodeDAQ

«nterface
10ntologyConceptD:

AQ

insert{can, bean:Assessment)
deletefcon, criteria:Assessment)
updatefcon, bean, criteria)
finci(can, criteriay: List

insert(con, hean)
deletedcan, criteria)
updateicon, bean, criteria)
finciécon, criteria): List

insert{con, bean)
deletefcon, criteria)
update(con, bean, criteria)
findican, criteriay.List

oracle AssessmentDAQ

postgres. AssessmentDAQ

insert{con, hean)
deletefcon, criteria)

find{con, criteriay:List

upcate(con, kean, criteria)

«nterfaces

|AssessmentltemDAQ

inserticon, bean)
deletefcon, criteria)

findl(con, criteriayList

updatefcon, bean, criteria)

Figure 2.1: Simplified class diagram for CALM data access layer.

October 15, 2008

Chapter 3

Code Generation

Ultimately, the main purpose of CALM is to generate dynamic online forms for HID web application,
to be processed in a generic fashion by GAME. Once the pages making up a clinical assessment is
laid out, the corresponding assessment metadata for the database is created, the scores are bound
(associated) with their corresponding display elements or logical groups of display elements acting as
a single form input mechanism and the question metadata is provided, CALM is ready to generate
the necessary code for the HID web application. The generated code is comprised of a Struts form
bean, two JSPs for each page of the online form, one as the Struts Tiles template binder, the other
for the actual body of the form and the modification to struts-config.zml.template file.

A simplified class diagram for CALM code generator is shown in Figure 3.1. The contract for
each code generator is provided by the interface IGenerator. The common functionality for all code
generators are provided by the abstract class AbstractGenerator. The form beans are generated by
FormBeanGenerator class, while the JSP corresponding to the laid out form page is generated by
StrutsJSPGenerator class. The builder class StrutsCodeGenerator is responsible for coordinating
code generation for the whole clinical assessment including struts configuration file updating. The
necessary configuration input is provided via the StrusCodegenConfig class.

3.1 Struts JSP Generation

CALM maps the container hierarchy to a hierarchy of HTML tables. CSS based layout management
is still at its infancy and it is not as fine granular as what you can do with tables for layouts with
relative positions and not supported consistently across browsers. The StrutsCodeGenerator class
generates the HTML table hierarchy recursively starting from the provided root CAContainer class
for a form page. The StrutsCodeGenerator class uses CodegenUtils utility class for lower level
functionality needed including

e determining their outermost container for multi-answer questions
e converting a grid layout row into equivalent HTML table row.

The generated JSP uses Struts custom JSP tags and Javascript for client side dynamic behavior.
Most of the nearly static portions of the generated JSP including Javascript snippets are loaded
from the jsp_snippets.tzt file as located by code.snippet.dir application property as defined in caslay-
out.properties file.

10

Struts Form Bean Generation 11

@interfaces
|Generator

generatedout: Writer)
setindemsSizedndentSize:int
getlndentSized:int
setindentindent: boolean)
getlndent(:bhoolean

iy

AbstractGenerator
Struts|SPCenerator FormBEeanCenerataor
#HrenderDisplavComponent{icIDisplayComponent) #Wr!teHeaderO
#generateTables(out: Writer, cont: CACantainer) #writeFooter])
#generateMultisnswerQuestioniout: Writer, cant: CACantainer, gi: Questioninfo) #uritelnstancevariables)
- 1 [#writeConstructor(
##writeQuestionCounterM ethodsg
#H#writeAccessors()
#createlnnerclassAndstaticy ariables)
StrutsCodeCeneratar #HereatePageQuestioninfoClass()
#createCetPageQuestionsMapM ethod
config:StrutsCodegenConfig #rreateHiddenvariablesandAccessorsg
generateFormBeani #ireateResetMethod()
generate|SPs{ #coreateGetvariableM aph ethod)
generateTiles|spPages()
updateStrutsConfigFiled

StrutsCodegenCaonfig

Figure 3.1: Simplified class diagram for CALM code generator.

3.2 Struts Form Bean Generation

The FormBeanGenerator class is responsible for generating a java bean responsible as the conduit
between the HTML form pages and the underlying generic controller (GAME) in the HID web app.
The form bean is used to populate the viewed forms and retrieve user input from the submitted
HTML forms. Each form bean is associated with a single clinical assessment and responsible
for data mapping of each HTML form page the clinical assessment is comprised of. Besides the
assessment scores as properties, it includes metadata related to the page information of the scores,
mandatory field related metadata, question related metadata and mapping for hidden variables
necessary for missing value and multiple-answer question handling. The nearly static portions of
the generated form bean are loaded from the java_snippets.tzt file as located by code.snippet.dir
application property as defined in caslayout.properties file. The generated form beans must be
saved under the /clinical/web/game/forms relative to HID web app home directory as specified in
Mandatory Information for Code Generation dialog box. CALM remembers most of the almost
invariant user input by serializing its operation state when you exit CALM and deserialize when
you start it again including the HID web app home directory.

3.3 Updating Struts configuration file
In Struts web framework, page navigation form bean, action class definitions are defined in one or
more configuration files. CALM updates struts-config.zml.template file once it generates the form

bean and JSP pages. The updateStrutsConfigFile method in StrutsCodeGenerator class is the entry
point for this operation. The generated code is put inside the sections of the configuration file

October 15, 2008

Updating Struts configuration file 12

delimited by the following markers

<!-- CALM generated start -->

<!-- CALM generated end -->

First, the existence of the configuration is checked to support incremental updates to the con-
figuration file. This is acomplished by a call to hasTheConfiguration method which parses the
configuration file and checks for the existence of the form bean and JSPs to be configured and
returns an FEzistingActionFormlInfo object representing already existing JSPs and/or form bean
configuration. If there are new JSPs added in this CALM session to the assessment, only those
actions will be added to the Struts config file.

October 15, 2008

